شبیه سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی(مورد: حوضه آبخیز فریدن)
Authors
Abstract:
سیل، یکی از پدیدههای ویرانگر طبیعی است که پیشبینی آن از اهمیت بالایی برخوردار است و در این میان برآورد بارش- رواناب به دلیل تأثیرگذاری عوامل مختلف، دشوار است. در این پژوهش با استفاده از شبکه پرسپترون چند لایه(MLP)، قانون یادگیری پسانتشار خطا(BP)، الگوریتم لونبرگ- مارکوارت(LM) و معیارهای RMSE و R2 جهت کارایی مدل، 6 سناریو تعریف گردید. بررسی حالات مختلف نشان داد که بهترین مدل شبکه عصبی جهت شبیهسازی بارش- رواناب، مدلی است با ساختار1-32-6 نرون در لایههای ورودی، پنهان و خروجی که مقادیر میانگین مربعات خطای مدل در مراحل مختلف آزمایش، صحتسنجی و آزمون به ترتیب؛ 23/0، 19/0 و 21/0 و ضریب همبستگی در بهترین سناریو به ترتیب؛ 98%، 97% و 96% میباشد که حاکی از همبستگی بالا و معنیداری بین مقادیر مشاهداتی و مقادیر پیشبینی شده دارد. نتایج حاصل، توانایی بالای شبکه عصبی مصنوعی در مدله نمودن بارش- رواناب را به هنگام استفاده از پارامترهای ؤئومورفولوژیکی در حوضه فریدن به خوبی نشان میدهد.
similar resources
شبیه سازی فرآیند بارش رواناب در حوزه آبخیز ناورود با مدل ولترای مرتبه محدود و شبکه های عصبی مصنوعی
This study evaluates the performance of the linear first-order Volterra model for simulating nonlinear rainfall-runoff process. For this end, fifteen storm events over the Navrood River basin were collected. 70% and 30% of the events were used to calibrate and test the suitability of the model. Finally, the performance of the model was compared with the artificial neural networks (multilayer pe...
full textشبیه سازی فرآیند بارش- رواناب با استفاده از شبکه عصبی مصنوعی و سیستم فازی- عصبی تطبیقی (مطالعه موردی: حوزه آبخیز حاجیقوشان)
full text
الگوی جدید بارش- رواناب حوضه آبریز هلیل رود با استفاده از مدل هیبرید شبکه عصبی- موجکی
برآورد سیلاب و مدیریت آن از دیرباز مورد توجه کارشناسان و مدیران علوم محیطی بوده است. برای این امر روشهای بسیاری وجود دارد که یکی از چشمگیرترین آنها استفاده از شبکههای عصبی مصنوعی است. در این تحقیق، مدل بارش- رواناب حوضه آبریز رودخانه هلیل رود در جنوبشرق ایران ارائه شده است. ظهور تئوریهای توانمند مانند منطق فازی و شبکههای عصبی مصنوعی(ANN)، الگوریتم ژنتیک و موجک تحولی عظیم در تحلیل رفت...
full textشبیه سازی فرآیند بارش- رواناب با بکارگیری شبکه عصبی مصنوعی (ANN) و مدل HEC-HMS ( مطالعه موردی حوزه آبخیز کسیلیان)
برای شبیه سازی فرآیند بارش - رواناب در سطح حوزه آبخیز کسیلیان با مساحت حدود 68 کیلومترمربع واقع در شمال ایران، مدل (HEC-HMS) و روش شبکه عصبی مصنوعی(ANN) بکار گرفته شد. شبکه عصبی دارای قابلیت بالایی برای برقراری ارتباط بین داده های ورودی و خروجی و مدل(HEC-HMS) دارای قابلیت بالایی در بهینه سازی آبنمود شبیه سازی شده می باشد. عامل هدر رفت اولیه خاک به عنوان یک معیار کمی در برگیرنده سه فاک...
full textشبیه سازی پیوسته بارش-رواناب حوضه ی شهرچای ارومیه با استفاده از مدل HEC-HMS
چکیده در محاسـبات هیدرولوژیکی یـک حوضه تعیین ارتباط بین بارش- رواناب بسیار مـهم است. محاسبهی دقیق بارش-رواناب در سطح حوضه به شناخت مؤلفهها و متغیرهای شکلدهندهی آن و همچنین استفاده از یک مدل مناسب وابسته است. در این مطالعه، بارش-رواناب پیوستهی حوضهی شهرچای ارومیه با استفاده از مدل هیدرولوژیکی HEC-HMS شبیهسازی شد. برای این منظور ابتدا مدل حوضهی آبخیز با استفاده از نقشهی DEM منطقهی مور...
full textMy Resources
Journal title
volume 24 issue 3
pages 25- 40
publication date 2013-09-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023